Exploring Chain-of-Thought Style Prompting for Text-to-SQL

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang Deng, Huan Sun

Conventional supervised approaches for text-to-SQL parsing often require large amounts of annotated data, which is costly to obtain in practice. Recently, in-context learning with large language models (LLMs) has caught increasing attention due to its superior few-shot performance in a wide range of tasks. However, most attempts to use in-context learning for text-to-SQL parsing still lag behind supervised methods. We hypothesize that the under-performance is because text-to-SQL parsing requires complex, multi-step reasoning. In this paper, we systematically study how to enhance the reasoning ability of LLMs for text-to-SQL parsing through chain-of-thought (CoT) style promptings including CoT prompting and Least-to-Most prompting. Our experiments demonstrate that iterative prompting as in Least-to-Most prompting may be unnecessary for text-to-SQL parsing and directly applying existing CoT style prompting methods leads to error propagation issues. By improving multi-step reasoning while avoiding much detailed information in the reasoning steps which may lead to error propagation, our new method outperforms existing ones by 2.4 point absolute gains on the Spider development set.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment