Pivot Sampling in Dual-Pivot Quicksort

Markus E. Nebel, Sebastian Wild

The new dual-pivot Quicksort by Vladimir Yaroslavskiy - used in Oracle's Java runtime library since version 7 - features intriguing asymmetries in its behavior. They were shown to cause a basic variant of this algorithm to use less comparisons than classic single-pivot Quicksort implementations. In this paper, we extend the analysis to the case where the two pivots are chosen as fixed order statistics of a random sample and give the precise leading term of the average number of comparisons, swaps and executed Java Bytecode instructions. It turns out that - unlike for classic Quicksort, where it is optimal to choose the pivot as median of the sample - the asymmetries in Yaroslavskiy's algorithm render pivots with a systematic skew more efficient than the symmetric choice. Moreover, the optimal skew heavily depends on the employed cost measure; most strikingly, abstract costs like the number of swaps and comparisons yield a very different result than counting Java Bytecode instructions, which can be assumed most closely related to actual running time.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment