Automatic Segmentation of Broadcast News Audio using Self Similarity Matrix

Sapna Soni, Ahmed Imran, Sunil Kumar Kopparapu

Generally audio news broadcast on radio is com- posed of music, commercials, news from correspondents and recorded statements in addition to the actual news read by the newsreader. When news transcripts are available, automatic segmentation of audio news broadcast to time align the audio with the text transcription to build frugal speech corpora is essential. We address the problem of identifying segmentation in the audio news broadcast corresponding to the news read by the newsreader so that they can be mapped to the text transcripts. The existing techniques produce sub-optimal solutions when used to extract newsreader read segments. In this paper, we propose a new technique which is able to identify the acoustic change points reliably using an acoustic Self Similarity Matrix (SSM). We describe the two pass technique in detail and verify its performance on real audio news broadcast of All India Radio for different languages.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment