Conclusions from a NAIVE Bayes Operator Predicting the Medicare 2011 Transaction Data Set

Nick Williams

Introduction: The United States Federal Government operates one of the worlds largest medical insurance programs, Medicare, to ensure payment for clinical services for the elderly, illegal aliens and those without the ability to pay for their care directly. This paper evaluates the Medicare 2011 Transaction Data Set which details the transfer of funds from Medicare to private and public clinical care facilities for specific clinical services for the operational year 2011. Methods: Data mining was conducted to establish the relationships between reported and computed transaction values in the data set to better understand the drivers of Medicare transactions at a programmatic level. Results: The models averaged 88 for average model accuracy and 38 for average Kappa during training. Some reported classes are highly independent from the available data as their predictability remains stable regardless of redaction of supporting and contradictory evidence. DRG or procedure type appears to be unpredictable from the available financial transaction values. Conclusions: Overlay hypotheses such as charges being driven by the volume served or DRG being related to charges or payments is readily false in this analysis despite 28 million Americans being billed through Medicare in 2011 and the program distributing over 70 billion in this transaction set alone. It may be impossible to predict the dependencies and data structures the payer of last resort without data from payers of first and second resort. Political concerns about Medicare would be better served focusing on these first and second order payer systems as what Medicare costs is not dependent on Medicare itself.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment