A Remark on Disk Packings and Numerical Integration of Harmonic Functions

Stefan Steinerberger

We are interested in the following problem: given an open, bounded domain $\Omega \subset \mathbb{R}^2$, what is the largest constant $\alpha = \alpha(\Omega) > 0$ such that there exist an infinite sequence of disks $B_1, B_2, \dots, B_N, \dots \subset \mathbb{R}^2$ and a sequence $(n_i)$ with $n_i \in \left\{1,2\right\}$ such that $$ \sup_{N \in \mathbb{N}}{N^{\alpha}\left\| \chi_{\Omega} - \sum_{i=1}^{N}{(-1)^{n_i}\chi_{B_i}}\right\|_{L^1(\mathbb{R}^2)}} < \infty,$$ where $\chi$ denotes the characteristic function? We prove that certain (somewhat peculiar) domains $\Omega \subset \mathbb{R}^2$ satisfy the property with $\alpha = 0.53$. For these domains there exists a sequence of points $(x_i)_{i=1}^{\infty}$ in $\Omega$ with weights $(a_i)_{i=1}^{\infty}$ such that for all harmonic functions $u:\mathbb{R}^2 \rightarrow \mathbb{R}$ $$ \left|\int_{\Omega}{u(x)dx} - \sum_{i=1}^{N}{a_i u(x_i)}\right| \leq C_{\Omega}\frac{\|u\|_{L^{\infty}(\Omega)}}{N^{0.53}},$$ where $C_{\Omega}$ depends only on $\Omega$. This gives a Quasi-Monte-Carlo method for harmonic functions which improves on the probabilistic Monte-Carlo bound $\|u\|_{L^{2}(\Omega)}/N^{0.5}$ \textit{without} introducing a dependence on the total variation. We do not know which decay rates are optimal.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment