A Case Where Interference Does Not Affect The Channel Dispersion

Sy-Quoc Le, Vincent Y. F. Tan, Mehul Motani

In 1975, Carleial presented a special case of an interference channel in which the interference does not reduce the capacity of the constituent point-to-point Gaussian channels. In this work, we show that if the inequalities in the conditions that Carleial stated are strict, the dispersions are similarly unaffected. More precisely, in this work, we characterize the second-order coding rates of the Gaussian interference channel in the strictly very strong interference regime. In other words, we characterize the speed of convergence of rates of optimal block codes towards a boundary point of the (rectangular) capacity region. These second-order rates are expressed in terms of the average probability of error and variances of some modified information densities which coincide with the dispersion of the (single-user) Gaussian channel. We thus conclude that the dispersions are unaffected by interference in this channel model.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment