We give a fixed-parameter tractable algorithm that, given a parameter $k$ and two graphs $G_1,G_2$, either concludes that one of these graphs has treewidth at least $k$, or determines whether $G_1$ and $G_2$ are isomorphic. The running time of the algorithm on an $n$-vertex graph is $2^{O(k^5\log k)}\cdot n^5$, and this is the first fixed-parameter algorithm for Graph Isomorphism parameterized by treewidth. Our algorithm in fact solves the more general canonization problem. We namely design a procedure working in $2^{O(k^5\log k)}\cdot n^5$ time that, for a given graph $G$ on $n$ vertices, either concludes that the treewidth of $G$ is at least $k$, or: * finds in an isomorphic-invariant way a graph $\mathfrak{c}(G)$ that is isomorphic to $G$; * finds an isomorphism-invariant construction term --- an algebraic expression that encodes $G$ together with a tree decomposition of $G$ of width $O(k^4)$. Hence, the isomorphism test reduces to verifying whether the computed isomorphic copies or the construction terms for $G_1$ and $G_2$ are equal.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok