In his seminal paper on morphogenesis (1952), Alan Turing demonstrated that different spatio-temporal patterns can arise due to instability of the homogeneous state in reaction-diffusion systems, but at least two species are necessary to produce even the simplest stationary patterns. This paper is aimed to propose a novel model of the analog (continuous state) kinetic automaton and to show that stationary and dynamic patterns can arise in one-component networks of kinetic automata. Possible applicability of kinetic networks to modeling of real-world phenomena is also discussed.