Manipulation is a problem of fundamental importance in the context of voting in which the voters exercise their votes strategically instead of voting honestly to prevent selection of an alternative that is less preferred. The Gibbard-Satterthwaite theorem shows that there is no strategy-proof voting rule that simultaneously satisfies certain combinations of desirable properties. Researchers have attempted to get around the impossibility results in several ways such as domain restriction and computational hardness of manipulation. However these approaches have been shown to have limitations. Since prevention of manipulation seems to be elusive, an interesting research direction therefore is detection of manipulation. Motivated by this, we initiate the study of detection of possible manipulators in an election. We formulate two pertinent computational problems - Coalitional Possible Manipulators (CPM) and Coalitional Possible Manipulators given Winner (CPMW), where a suspect group of voters is provided as input to compute whether they can be a potential coalition of possible manipulators. In the absence of any suspect group, we formulate two more computational problems namely Coalitional Possible Manipulators Search (CPMS), and Coalitional Possible Manipulators Search given Winner (CPMSW). We provide polynomial time algorithms for these problems, for several popular voting rules. For a few other voting rules, we show that these problems are in NP-complete. We observe that detecting manipulation maybe easy even when manipulation is hard, as seen for example, in the case of the Borda voting rule.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok