A New Highly Parallel Non-Hermitian Eigensolver

Ping Tak Peter Tang, James Kestyn, Eric Polizzi

Calculating portions of eigenvalues and eigenvectors of matrices or matrix pencils has many applications. An approach to this calculation for Hermitian problems based on a density matrix has been proposed in 2009 and a software package called FEAST has been developed. The density-matrix approach allows FEAST's implementation to exploit a key strength of modern computer architectures, namely, multiple levels of parallelism. Consequently, the software package has been well received and subsequently commercialized. A detailed theoretical analysis of Hermitian FEAST has also been established very recently. This paper generalizes the FEAST algorithm and theory, for the first time, to tackle non-Hermitian problems. Fundamentally, the new algorithm is basic subspace iteration or Bauer bi-iteration, except applied with a novel accelerator based on Cauchy integrals. The resulting algorithm retains the multi-level parallelism of Hermitian FEAST, making it a valuable new tool for large-scale computational science and engineering problems on leading-edge computing platforms.

Knowledge Graph



Sign up or login to leave a comment