On the rank of random matrices over finite fields

Daniel Salmond, Alex Grant, Ian Grivell, Terence Chan

A novel lower bound is introduced for the full rank probability of random finite field matrices, where a number of elements with known location are identically zero, and remaining elements are chosen independently of each other, uniformly over the field. The main ingredient is a result showing that constraining additional elements to be zero cannot result in a higher probability of full rank. The bound then follows by "zeroing" elements to produce a block-diagonal matrix, whose full rank probability can be computed exactly. The bound is shown to be at least as tight and can be strictly tighter than existing bounds.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment