Overloaded Satellite Receiver Using SIC with Hybrid Beamforming and ML Detection

Zohair Abu-Shaban, Hani Mehrpouyan, Joel Grotz, Bjorn Ottersten

In this paper, a new receiver structure that is intended to detect the signals from multiple adjacent satellites in the presence of other interfering satellites is proposed. We tackle the worst case interference conditions, i.e., it is assumed that uncoded signals that fully overlap in frequency arrive at a multiple-element small-size parabolic antenna in a spatially correlated noise environment. The proposed successive interference cancellation (SIC) receiver, denoted by SIC Hy/ML, employs hybrid beamforming and disjoint maximum likelihood (ML) detection. Depending on the individual signals spatial position, the proposed SIC Hy/ML scheme takes advantage of two types of beamformers: a maximum ratio combining (MRC) beamformer and a compromised array response (CAR) beamformer. The performance of the proposed receiver is compared to an SIC receiver that uses only MRC beamforming scheme with ML detection for all signals, a joint ML detector, and a minimum mean square error detector. It is found that SIC Hy/ML outperforms the other schemes by a large margin.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment