Radical-Enhanced Chinese Character Embedding

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhenzhou Ji, Xiaolong Wang

We present a method to leverage radical for learning Chinese character embedding. Radical is a semantic and phonetic component of Chinese character. It plays an important role as characters with the same radical usually have similar semantic meaning and grammatical usage. However, existing Chinese processing algorithms typically regard word or character as the basic unit but ignore the crucial radical information. In this paper, we fill this gap by leveraging radical for learning continuous representation of Chinese character. We develop a dedicated neural architecture to effectively learn character embedding and apply it on Chinese character similarity judgement and Chinese word segmentation. Experiment results show that our radical-enhanced method outperforms existing embedding learning algorithms on both tasks.

Knowledge Graph



Sign up or login to leave a comment