Learning in Repeated Games: Human Versus Machine

Fatimah Ishowo-Oloko, Jacob Crandall, Manuel Cebrian, Sherief Abdallah, Iyad Rahwan

While Artificial Intelligence has successfully outperformed humans in complex combinatorial games (such as chess and checkers), humans have retained their supremacy in social interactions that require intuition and adaptation, such as cooperation and coordination games. Despite significant advances in learning algorithms, most algorithms adapt at times scales which are not relevant for interactions with humans, and therefore the advances in AI on this front have remained of a more theoretical nature. This has also hindered the experimental evaluation of how these algorithms perform against humans, as the length of experiments needed to evaluate them is beyond what humans are reasonably expected to endure (max 100 repetitions). This scenario is rapidly changing, as recent algorithms are able to converge to their functional regimes in shorter time-scales. Additionally, this shift opens up possibilities for experimental investigation: where do humans stand compared with these new algorithms? We evaluate humans experimentally against a representative element of these fast-converging algorithms. Our results indicate that the performance of at least one of these algorithms is comparable to, and even exceeds, the performance of people.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment