Together we stand, Together we fall, Together we win: Dynamic Team Formation in Massive Open Online Courses

Tanmay Sinha

Massive Open Online Courses (MOOCs) offer a new scalable paradigm for e-learning by providing students with global exposure and opportunities for connecting and interacting with millions of people all around the world. Very often, students work as teams to effectively accomplish course related tasks. However, due to lack of face to face interaction, it becomes difficult for MOOC students to collaborate. Additionally, the instructor also faces challenges in manually organizing students into teams because students flock to these MOOCs in huge numbers. Thus, the proposed research is aimed at developing a robust methodology for dynamic team formation in MOOCs, the theoretical framework for which is grounded at the confluence of organizational team theory, social network analysis and machine learning. A prerequisite for such an undertaking is that we understand the fact that, each and every informal tie established among students offers the opportunities to influence and be influenced. Therefore, we aim to extract value from the inherent connectedness of students in the MOOC. These connections carry with them radical implications for the way students understand each other in the networked learning community. Our approach will enable course instructors to automatically group students in teams that have fairly balanced social connections with their peers, well defined in terms of appropriately selected qualitative and quantitative network metrics.

Knowledge Graph



Sign up or login to leave a comment