An arbitrary order locking-free weak Galerkin method for linear elasticity problems based on a reconstruction operator

Fuchang Huo, Ruishu Wang, Yanqiu Wang, Ran Zhang

The weak Galerkin (WG) finite element method has shown great potential in solving various type of partial differential equations. In this paper, we propose an arbitrary order locking-free WG method for solving linear elasticity problems, with the aid of an appropriate $H(div)$-conforming displacement reconstruction operator. Optimal order locking-free error estimates in both the $H^1$-norm and the $L^2$-norm are proved, i.e., the error is independent of the $Lam\acute{e}$ constant $\lambda$. Moreover, the term $\lambda\|\nabla\cdot \mathbf{u}\|_k$ does not need to be bounded in order to achieve these estimates. We validate the accuracy and the robustness of the proposed locking-free WG algorithm by numerical experiments.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment