MLLM-Bench, Evaluating Multi-modal LLMs using GPT-4V

Wentao Ge, Shunian Chen, Guiming Chen, Junying Chen, Zhihong Chen, Shuo Yan, Chenghao Zhu, Ziyue Lin, Wenya Xie, XiDong Wang, Anningzhe Gao, Zhiyi Zhang, Jianquan Li, Xiang Wan, Benyou Wang

In the pursuit of Artificial General Intelligence (AGI), the integration of vision in language models has marked a significant milestone. The advent of vision-language models (MLLMs) like GPT-4V have expanded AI applications, aligning with the multi-modal capabilities of the human brain. However, evaluating the efficacy of MLLMs poses a substantial challenge due to the subjective nature of tasks that lack definitive answers. Existing automatic evaluation methodologies on multi-modal large language models rely on objective queries that have standard answers, inadequately addressing the nuances of creative and associative multi-modal tasks. To address this, we introduce MLLM-Bench, an innovative benchmark inspired by Vicuna, spanning a diverse array of scenarios, including Perception, Understanding, Applying, Analyzing, Evaluating, and Creation along with the ethical consideration. MLLM-Bench is designed to reflect user experience more accurately and provide a more holistic assessment of model performance. Comparative evaluations indicate a significant performance gap between existing open-source models and GPT-4V. We posit that MLLM-Bench will catalyze progress in the open-source community towards developing user-centric vision-language models that meet a broad spectrum of real-world applications. See online leaderboard in \url{https://mllm-bench.llmzoo.com}.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment