Children with developmental language disorder (DLD) encounter difficulties in acquiring various language structures. Early identification and intervention are crucial to prevent negative long-term outcomes impacting the academic, social, and emotional development of children. The study aims to develop an automated method for the identification of DLD using artificial intelligence, specifically a neural network machine learning algorithm. This protocol is applied for the first time in Cypriot Greek children, which is generally considered underresearched in the context of DLD. The neural network model was trained using perceptual and production data elicited from children with DLD and healthy controls. The k-fold technique was used to crossvalidate the algorithm. The performance of the model was evaluated using metrics such as accuracy, precision, recall, F1 score, and ROC/AUC curve to assess its ability to make accurate predictions on a set of unseen data. The results demonstrated high classification values for all metrics (between 0.92 and 0.98), indicating the high accuracy of the neural model in classifying children with DLD. Additionally, the variable importance analysis revealed that the language production skills of children had a more significant impact on the performance of the model compared to perception skills. Neural networks represent powerful tools for detecting DLD, providing early and quick assessments of the disorder, and having the potential to improve clinical outcomes.