On the limitation of spectral methods: From the Gaussian hidden clique problem to rank one perturbations of Gaussian tensors

Andrea Montanari, Daniel Reichman, Ofer Zeitouni

We consider the following detection problem: given a realization of a symmetric matrix ${\mathbf{X}}$ of dimension $n$, distinguish between the hypothesis that all upper triangular variables are i.i.d. Gaussians variables with mean 0 and variance $1$ and the hypothesis where ${\mathbf{X}}$ is the sum of such matrix and an independent rank-one perturbation. This setup applies to the situation where under the alternative, there is a planted principal submatrix ${\mathbf{B}}$ of size $L$ for which all upper triangular variables are i.i.d. Gaussians with mean $1$ and variance $1$, whereas all other upper triangular elements of ${\mathbf{X}}$ not in ${\mathbf{B}}$ are i.i.d. Gaussians variables with mean 0 and variance $1$. We refer to this as the `Gaussian hidden clique problem.' When $L=(1+\epsilon)\sqrt{n}$ ($\epsilon>0$), it is possible to solve this detection problem with probability $1-o_n(1)$ by computing the spectrum of ${\mathbf{X}}$ and considering the largest eigenvalue of ${\mathbf{X}}$. We prove that this condition is tight in the following sense: when $L<(1-\epsilon)\sqrt{n}$ no algorithm that examines only the eigenvalues of ${\mathbf{X}}$ can detect the existence of a hidden Gaussian clique, with error probability vanishing as $n\to\infty$. We prove this result as an immediate consequence of a more general result on rank-one perturbations of $k$-dimensional Gaussian tensors. In this context we establish a lower bound on the critical signal-to-noise ratio below which a rank-one signal cannot be detected.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment