Discrete Bayesian Networks: The Exact Posterior Marginal Distributions

Do Le Paul Minh

In a Bayesian network, we wish to evaluate the marginal probability of a query variable, which may be conditioned on the observed values of some evidence variables. Here we first present our "border algorithm," which converts a BN into a directed chain. For the polytrees, we then present in details, with some modifications and within the border algorithm framework, the "revised polytree algorithm" by Peot & Shachter (1991). Finally, we present our "parentless polytree method," which, coupled with the border algorithm, converts any Bayesian network into a polytree, rendering the complexity of our inferences independent of the size of network, and linear with the number of its evidence and query variables. All quantities in this paper have probabilistic interpretations.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment