Short-Term Memory Through Persistent Activity: Evolution of Self-Stopping and Self-Sustaining Activity in Spiking Neural Networks

Julien Hubert, Takashi Ikegami

Memories in the brain are separated in two categories: short-term and long-term memories. Long-term memories remain for a lifetime, while short-term ones exist from a few milliseconds to a few minutes. Within short-term memory studies, there is debate about what neural structure could implement it. Indeed, mechanisms responsible for long-term memories appear inadequate for the task. Instead, it has been proposed that short-term memories could be sustained by the persistent activity of a group of neurons. In this work, we explore what topology could sustain short-term memories, not by designing a model from specific hypotheses, but through Darwinian evolution in order to obtain new insights into its implementation. We evolved 10 networks capable of retaining information for a fixed duration between 2 and 11s. Our main finding has been that the evolution naturally created two functional modules in the network: one which sustains the information containing primarily excitatory neurons, while the other, which is responsible for forgetting, was composed mainly of inhibitory neurons. This demonstrates how the balance between inhibition and excitation plays an important role in cognition.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment