We address the problem of social network de-anonymization when relationships between people are described by scale-free graphs. In particular, we propose a rigorous, asymptotic mathematical analysis of the network de-anonymization problem while capturing the impact of power-law node degree distribution, which is a fundamental and quite ubiquitous feature of many complex systems such as social networks. By applying bootstrap percolation and a novel graph slicing technique, we prove that large inhomogeneities in the node degree lead to a dramatic reduction of the initial set of nodes that must be known a priori (the seeds) in order to successfully identify all other users. We characterize the size of this set when seeds are selected using different criteria, and we show that their number can be as small as $n^{\epsilon}$, for any small ${\epsilon>0}$. Our results are validated through simulation experiments on a real social network graph.