Analysis of Pivot Sampling in Dual-Pivot Quicksort

Sebastian Wild, Markus E. Nebel, Conrado Martínez

The new dual-pivot Quicksort by Vladimir Yaroslavskiy - used in Oracle's Java runtime library since version 7 - features intriguing asymmetries. They make a basic variant of this algorithm use less comparisons than classic single-pivot Quicksort. In this paper, we extend the analysis to the case where the two pivots are chosen as fixed order statistics of a random sample. Surprisingly, dual-pivot Quicksort then needs more comparisons than a corresponding version of classic Quicksort, so it is clear that counting comparisons is not sufficient to explain the running time advantages observed for Yaroslavskiy's algorithm in practice. Consequently, we take a more holistic approach and give also the precise leading term of the average number of swaps, the number of executed Java Bytecode instructions and the number of scanned elements, a new simple cost measure that approximates I/O costs in the memory hierarchy. We determine optimal order statistics for each of the cost measures. It turns out that the asymmetries in Yaroslavskiy's algorithm render pivots with a systematic skew more efficient than the symmetric choice. Moreover, we finally have a convincing explanation for the success of Yaroslavskiy's algorithm in practice: Compared with corresponding versions of classic single-pivot Quicksort, dual-pivot Quicksort needs significantly less I/Os, both with and without pivot sampling.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment