Given a real-valued function $f$ defined over a manifold $M$ embedded in $\mathbb{R}^d$, we are interested in recovering structural information about $f$ from the sole information of its values on a finite sample $P$. Existing methods provide approximation to the persistence diagram of $f$ when geometric noise and functional noise are bounded. However, they fail in the presence of aberrant values, also called outliers, both in theory and practice. We propose a new algorithm that deals with outliers. We handle aberrant functional values with a method inspired from the k-nearest neighbors regression and the local median filtering, while the geometric outliers are handled using the distance to a measure. Combined with topological results on nested filtrations, our algorithm performs robust topological analysis of scalar fields in a wider range of noise models than handled by current methods. We provide theoretical guarantees and experimental results on the quality of our approximation of the sampled scalar field.