Unsupervised Induction of Semantic Roles within a Reconstruction-Error Minimization Framework

Ivan Titov, Ehsan Khoddam

We introduce a new approach to unsupervised estimation of feature-rich semantic role labeling models. Our model consists of two components: (1) an encoding component: a semantic role labeling model which predicts roles given a rich set of syntactic and lexical features; (2) a reconstruction component: a tensor factorization model which relies on roles to predict argument fillers. When the components are estimated jointly to minimize errors in argument reconstruction, the induced roles largely correspond to roles defined in annotated resources. Our method performs on par with most accurate role induction methods on English and German, even though, unlike these previous approaches, we do not incorporate any prior linguistic knowledge about the languages.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment