Taking full advantages of both heterogeneous networks (HetNets) and cloud access radio access networks (CRANs), heterogeneous cloud radio access networks (H-CRANs) are presented to enhance both the spectral and energy efficiencies, where remote radio heads (RRHs) are mainly used to provide high data rates for users with high quality of service (QoS) requirements, while the high power node (HPN) is deployed to guarantee the seamless coverage and serve users with low QoS requirements. To mitigate the inter-tier interference and improve EE performances in H-CRANs, characterizing user association with RRH/HPN is considered in this paper, and the traditional soft fractional frequency reuse (S-FFR) is enhanced. Based on the RRH/HPN association constraint and the enhanced S-FFR, an energy-efficient optimization problem with the resource assignment and power allocation for the orthogonal frequency division multiple access (OFDMA) based H-CRANs is formulated as a non-convex objective function. To deal with the non-convexity, an equivalent convex feasibility problem is reformulated, and closedform expressions for the energy-efficient resource allocation solution to jointly allocate the resource block and transmit power are derived by the Lagrange dual decomposition method. Simulation results confirm that the H-CRAN architecture and the corresponding resource allocation solution can enhance the energy efficiency significantly.