Asymptotics and Non-asymptotics for Universal Fixed-to-Variable Source Coding

Oliver Kosut, Lalitha Sankar

Universal fixed-to-variable lossless source coding for memoryless sources is studied in the finite blocklength and higher-order asymptotics regimes. Optimal third-order coding rates are derived for general fixed-to-variable codes and for prefix codes. It is shown that the non-prefix Type Size code, in which codeword lengths are chosen in ascending order of type class size, achieves the optimal third-order rate and outperforms classical Two-Stage codes. Converse results are proved making use of a result on the distribution of the empirical entropy and Laplace's approximation. Finally, the fixed-to-variable coding problem without a prefix constraint is shown to be essentially the same as the universal guessing problem.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment