A Successive Resultant Projection for Cylindrical Algebraic Decomposition

Yong Yao, Jia Xu, Lu Yang

This note shows the equivalence of two projection operators which both can be used in cylindrical algebraic decomposition (CAD) . One is known as Brown's Projection (C. W. Brown (2001)); the other was proposed by Lu Yang in his earlier work (L.Yang and S.~H. Xia (2000)) that is sketched as follows: given a polynomial $f$ in $x_1,\,x_2,\,\cdots$, by $f_1$ denote the resultant of $f$ and its partial derivative with respect to $x_1$ (removing the multiple factors), by $f_2$ denote the resultant of $f_1$ and its partial derivative with respect to $x_2$, (removing the multiple factors), $\cdots$, repeat this procedure successively until the last resultant becomes a univariate polynomial. Making use of an identity, the equivalence of these two projection operators is evident.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment