Toward a statistical mechanics of four letter words

Greg J. Stephens, William Bialek

We consider words as a network of interacting letters, and approximate the probability distribution of states taken on by this network. Despite the intuition that the rules of English spelling are highly combinatorial (and arbitrary), we find that maximum entropy models consistent with pairwise correlations among letters provide a surprisingly good approximation to the full statistics of four letter words, capturing ~92% of the multi-information among letters and even "discovering" real words that were not represented in the data from which the pairwise correlations were estimated. The maximum entropy model defines an energy landscape on the space of possible words, and local minima in this landscape account for nearly two-thirds of words used in written English.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment