Herbrand Consistency of Some Arithmetical Theories

Saeed Salehi

G\"odel's second incompleteness theorem is proved for Herbrand consistency of some arithmetical theories with bounded induction, by using a technique of logarithmic shrinking the witnesses of bounded formulas, due to Z. Adamowicz [Herbrand consistency and bounded arithmetic, \textit{Fundamenta Mathematicae} 171 (2002) 279--292]. In that paper, it was shown that one cannot always shrink the witness of a bounded formula logarithmically, but in the presence of Herbrand consistency, for theories ${\rm I\Delta_0+\Omega_m}$ with $m\geqslant 2$, any witness for any bounded formula can be shortened logarithmically. This immediately implies the unprovability of Herbrand consistency of a theory $T\supseteq {\rm I\Delta_0+\Omega_2}$ in $T$ itself. In this paper, the above results are generalized for ${\rm I\Delta_0+\Omega_1}$. Also after tailoring the definition of Herbrand consistency for ${\rm I\Delta_0}$ we prove the corresponding theorems for ${\rm I\Delta_0}$. Thus the Herbrand version of G\"odel's second incompleteness theorem follows for the theories ${\rm I\Delta_0+\Omega_1}$ and ${\rm I\Delta_0}$.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment