Pseudorandom Bits From Points on Elliptic Curves

Reza R. Farashahi, Igor E. Shparlinski

Let $\E$ be an elliptic curve over a finite field $\F_{q}$ of $q$ elements, with $\gcd(q,6)=1$, given by an affine Weierstra\ss\ equation. We also use $x(P)$ to denote the $x$-component of a point $P = (x(P),y(P))\in \E$. We estimate character sums of the form $$ \sum_{n=1}^N \chi\(x(nP)x(nQ)\) \quad \text{and}\quad \sum_{n_1, \ldots, n_k=1}^N \psi\(\sum_{j=1}^k c_j x\(\(\prod_{i =1}^j n_i\) R\)\) $$ on average over all $\F_q$ rational points $P$, $Q$ and $R$ on $\E$, where $\chi$ is a quadratic character, $\psi$ is a nontrivial additive character in $\F_q$ and $(c_1, \ldots, c_k)\in \F_q^k$ is a non-zero vector. These bounds confirm several recent conjectures of D. Jao, D. Jetchev and R. Venkatesan, related to extracting random bits from various sequences of points on elliptic curves.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment