Efficient Simulation of Complex Capillary Effects in Advanced Manufacturing Processes using the Finite Volume Method

Patrick Zimbrod, Magdalena Schreter, Johannes Schilp

The accurate representation of surface tension driven flows in multiphase systems is considered a challenging problem to resolve numerically. Although there have been extensive works in the past that have presented approaches to resolve these so called Marangoni flows at the phase boundaries, the question of how to efficiently resolve the interface in a universal and conservative manner remains largely open in comparison. Such problems are of high practical relevance in many manufacturing processes, especially in the microfluidic regime where capillary effects dominate the local force equilibria. In this work, we present a freely available numerical solver based on the Finite Volume Method that is able to resolve arbitrarily complex, incompressible multiphase systems with the mentioned physics at phase boundaries. An efficient solution with respect to the number of degrees of freedom can be obtained by either using high order WENO stencils or by employing adaptive cell refinement. We demonstrate the capabilities of the solver by investigating a model benchmark case as well as a single track laser melting process that is highly relevant within laser additive manufacturing.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment