Consistent and convergent discretizations of Helfrich-type energies on general meshes

Peter Gladbach, Heiner Olbermann

We show that integral curvature energies on surfaces of the type $E_0(M) := \int_M f(x,n_M(x),D n_M(x))\,d\mathcal{H}^2(x)$ have discrete versions for triangular complexes, where the shape operator $D n_M$ is replaced by the piecewise gradient of a piecewise affine edge director field. We combine an ansatz-free asymptotic lower bound for any uniform approximation of a surface with triangular complexes and a recovery sequence consisting of any regular triangulation of the limit sequence and an almost optimal choice of edge director.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment